Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes
نویسندگان
چکیده
منابع مشابه
An Eulerian-Lagrangian WENO finite volume scheme for advection problems
Abstract. We develop a locally conservative Eulerian-Lagrangian finite volume scheme with the weighted essentially non-oscillatory property (EL-WENO) in one-space dimension. This method has the advantages of both WENO and Eulerian-Lagrangian schemes. It is formally high-order accurate in space (we present the fifth order version) and essentially non-oscillatory. Moreover, it is free of a CFL ti...
متن کاملOptimising UCNS3D, a High-Order finite-Volume WENO Scheme Code for arbitrary unstructured Meshes
UCNS3D is a computational-fluid-dynamics (CFD) code for the simulation of viscous flows on arbitrary unstructured meshes. It employs very high-order numerical schemes which inherently are easier to scale than lower-order numerical schemes due to the higher ratio of computation versus communication. In this white paper, we report on optimisations of the UCNS3D code implemented in the course of t...
متن کاملFinite volume Hermite WENO schemes for solving the Hamilton-Jacobi equations II: Unstructured meshes
Abstract. In this paper, we present a new type of Hermite weighted essentially nonoscillatory (HWENO) schemes for solving the Hamilton-Jacobi equations on the finite volume framework. The cell averages of the function and its first one (in one dimension) or two (in two dimensions) derivative values are together evolved via time approaching and used in the reconstructions. And the major advantag...
متن کاملMonotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes
We consider a nonlinear finite volume (FV) scheme for stationary diffusion equation. We prove that the scheme is monotone, i.e. it preserves positivity of analytical solutions on arbitrary triangular meshes for strongly anisotropic and heterogeneous full tensor coefficients. The scheme is extended to regular star-shaped polygonal meshes and isotropic heterogeneous coefficients.
متن کاملWENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions
The paper extends weighted essentially non-oscillatory (WENO) methods to three dimensional mixed-element unstructured meshes, comprising tetrahedral, hexahedral, prismatic and pyramidal elements. Numerical results illustrate the convergence rates and non-oscillatory properties of the schemes for various smooth and discontinuous solutions test cases and the compressible Euler equations on variou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Computational Physics
سال: 2013
ISSN: 1815-2406,1991-7120
DOI: 10.4208/cicp.181012.010313a